Nanoparticles in Gastrooncology (2024)

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018 Nov;68((6)):394–424. [PubMed] [Google Scholar]

2. Singh M, Harris-Birtill DC, Markar SR, Hanna GB, Elson DS. Application of gold nanoparticles for gastrointestinal cancer theranostics: A systematic review. Nanomedicine (Lond) 2015 Nov;11((8)):2083–98. [PubMed] [Google Scholar]

3. Manzur A, Oluwasanmi A, Moss D, Curtis A, Hoskins C. Nanotechnologies in Pancreatic Cancer Therapy. Pharmaceutics. 2017 Sep;9((4)):223–39. [PMC free article] [PubMed] [Google Scholar]

4. Zavaleta CL, Garai E, Liu JTC, Sensarn S, Mandella MJ, Van de Sompel D, et al. Raman-based endoscopic strategy for multiplexed molecular imaging. Proc Natl Acad Sci. 2013 Jun;110((25)):E2288–97. [PMC free article] [PubMed] [Google Scholar]

5. El-Zahaby SA, Elnaggar YS, Abdallah OY. Reviewing two decades of nanomedicine implementations in targeted treatment and diagnosis of pancreatic cancer: an emphasis on state of art. J Control Release. 2019 Jan;293:21–35. [PubMed] [Google Scholar]

6. Elnaggar MH, Abushouk AI, Hassan AHE, Lamloum HM, Benmelouka A, Moatamed SA, et al. Nanomedicine as a putative approach for active targeting of hepatocellular carcinoma. Semin Cancer Biol. 14. August. 2019 (August)293:21–35. [PubMed] [Google Scholar]

7. Li R, Liu B, Gao J. The application of nanoparticles in diagnosis and theranostics of gastric cancer. Cancer Lett. 2017 Feb;386((1)):123–30. [PubMed] [Google Scholar]

8. Cisterna BA, Kamaly N, Choi WI, Tavakkoli A, Farokhzad OC, Vilos C. Targeted nanoparticles for colorectal cancer. Nanomedicine (Lond) 2016 Sep;11((18)):2443–56. [PMC free article] [PubMed] [Google Scholar]

9. Akhter S, Ahmad MZ, Ahmad FJ, Storm G, Kok RJ. Gold nanoparticles in theranostic oncology: current state-of-the-art. Expert Opin Drug Deliv. 2012 Oct;9((10)):1225–43. [PubMed] [Google Scholar]

10. Lei S, Chien PY, Sheikh S, Zhang A, Ali S, Ahmad I. Enhanced therapeutic efficacy of a novel liposome-based formulation of SN-38 against human tumor models in SCID mice. Anticancer Drugs. 2004 Sep;15((8)):773–8. [PubMed] [Google Scholar]

11. Batist G, Gelmon KA, Chi KN, Miller WH, Chia SKL, Mayer LD, et al. Safety, pharmaco*kinetics, and efficacy of CPX-1 liposome injection in patients with advanced solid tumors. Clin Cancer Res. 2009 Jan;15((2)):692–700. [PubMed] [Google Scholar]

12. Yang C, Liu HZ, Fu ZX, Lu WD. Oxaliplatin long-circulating liposomes improved therapeutic index of colorectal carcinoma. BMC Biotechnol. 2011 Mar;11((1)):21. [PMC free article] [PubMed] [Google Scholar]

13. Yang J, Hendricks W, Liu G, McCaffery JM, Kinzler KW, Huso DL, et al. A nanoparticle formulation that selectively transfects metastatic tumors in mice. Proc Natl Acad Sci USA. 2013 Sep;110((36)):14717–22. [PMC free article] [PubMed] [Google Scholar]

14. Chong G, Lee FT, Hopkins W, Tebbutt N, Cebon JS, Mountain AJ, et al. Phase I trial of 131I-huA33 in patients with advanced colorectal carcinoma. Clin Cancer Res. 2005 Jul;11((13)):4818–26. [PubMed] [Google Scholar]

15. Cortez C, Tomaskovic-Crook E, Johnston AP, Scott AM, Nice EC, Heath JK, et al. Influence of size, surface, cell line, and kinetic properties on the specific binding of A33 antigen-targeted multilayered particles and capsules to colorectal cancer cells. ACS Nano. 2007 Sep;1((2)):93–102. [PubMed] [Google Scholar]

16. Gounaris E, Martin J, Ishihara Y, Khan MW, Lee G, Sinh P, et al. Fluorescence endoscopy of cathepsin activity discriminates dysplasia from colitis. Inflamm Bowel Dis. 2013 Jun;19((7)):1339–45. [PMC free article] [PubMed] [Google Scholar]

17. He X, Liu F, Liu L, Duan T, Zhang H, Wang Z. Lectin-conjugated Fe2O3@Au core@Shell nanoparticles as dual mode contrast agents for in vivo detection of tumor. Mol Pharm. 2014 Mar;11((3)):738–45. [PubMed] [Google Scholar]

18. Huang P, Lin J, Wang X, Wang Z, Zhang C, He M, et al. Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Adv Mater. 2012 Sep;24((37)):5104–10. [PMC free article] [PubMed] [Google Scholar]

19. Wang P, Qu Y, Li C, Yin L, Shen C, Chen W, et al. Bio-functionalized dense-silica nanoparticles for MR/NIRF imaging of CD146 in gastric cancer. Int J Nanomedicine. 2015 Jan;10:749–63. [PMC free article] [PubMed] [Google Scholar]

20. Zhou Z, Zhang C, Qian Q, Ma J, Huang P, Zhang X, et al. Folic acid-conjugated silica capped gold nanoclusters for targeted fluorescence/X-ray computed tomography imaging. J Nanobiotechnology. 2013 May;11((1)):17. [PMC free article] [PubMed] [Google Scholar]

21. Cheng CC, Huang CF, Ho AS, Peng CL, Chang CC, Mai FD, et al. Novel targeted nuclear imaging agent for gastric cancer diagnosis: glucose-regulated protein 78 binding peptide-guided 111In-labeled polymeric micelles. Int J Nanomedicine. 2013;8:1385–91. [PMC free article] [PubMed] [Google Scholar]

22. Wang YW, Kang S, Khan A, Bao PQ, Liu JTC. In vivo multiplexed molecular imaging of esophageal cancer via spectral endoscopy of topically applied SERS nanoparticles. Biomed Opt Express. 2015 Oktober;6((10)):3714–23. [PMC free article] [PubMed] [Google Scholar]

23. Shubayev VI, Pisanic TR, Jin S. Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev. 2009 Jun;61((6)):467–77. [PMC free article] [PubMed] [Google Scholar]

24. Wittrup A, Zhang S-H, Svensson KJ, Kucharzewska P, Johansson MC, Mörgelin M, et al. Magnetic nanoparticle-based isolation of endocytic vesicles reveals a role of the heat shock protein GRP75 in macromolecular delivery. Proc Natl Acad Sci. 2010 Jul;107((30)):13342–7. [PMC free article] [PubMed] [Google Scholar]

25. Lima-Tenório MK, Pineda EA, Ahmad NM, Fessi H, Elaissari A. Magnetic nanoparticles: in vivo cancer diagnosis and therapy. Int J Pharm. 2015 Sep;493((1-2)):313–27. [PubMed] [Google Scholar]

26. Gobbo OL, Sjaastad K, Radomski MW, Volkov Y, Prina-Mello A. Magnetic Nanoparticles in Cancer Theranostics. Theranostics. 2015 Sep;5((11)):1249–63. [PMC free article] [PubMed] [Google Scholar]

27. Huang P, Li Z, Lin J, Yang D, Gao G, Xu C, et al. Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy. Biomaterials. 2011 May;32((13)):3447–58. [PubMed] [Google Scholar]

28. Huang P, Lin J, Wang X, Wang Z, Zhang C, He M, et al. Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Adv Mater. 2012 Sep;24((37)):5104–10. [PMC free article] [PubMed] [Google Scholar]

29. Dragutinović V V., Radovanović NS, Izrael-Zivković LT, Vrvić MM. Detection of gelatinase B activity in serum of gastric cancer patients. World J Gastroenterol. 2006 Jan;12((1)):105–9. [PMC free article] [PubMed] [Google Scholar]

30. Mroczko B, Lukaszewicz-Zając M, Gryko M, Kędra B, Szmitkowski M. Clinical significance of serum levels of matrix metalloproteinase 2 (MMP-2) and its tissue inhibitor (TIMP-2) in gastric cancer. Folia Histochem Cytobiol. 2011;49((1)):125–31. [PubMed] [Google Scholar]

31. Nomura Y, Takasaki K, Tada M, Yoshimoto M, Ishida H, Murata N, et al. Pro-MMP-9 is associated with poor prognosis in gastric cancer. Scand J Gastroenterol. 2007 Sep;42((9)):1070–2. [PubMed] [Google Scholar]

32. Li R, Wu W, Liu Q, Wu P, Xie L, Zhu Z, et al. Intelligently targeted drug delivery and enhanced antitumor effect by gelatinase-responsive nanoparticles. PLoS One. 2013 Jul;8((7)):e69643. [PMC free article] [PubMed] [Google Scholar]

33. Li R, Li X, Xie L, Ding D, Hu Y, Qian X, et al. Preparation and evaluation of PEG-PCL nanoparticles for local tetradrine delivery. Int J Pharm. 2009 Sep;379((1)):158–66. [PubMed] [Google Scholar]

34. Wang Q, Wu P, Ren W, Xin K, Yang Y, Xie C, et al. Comparative studies of salinomycin-loaded nanoparticles prepared by nanoprecipitation and single emulsion method. Nanoscale Res Lett. 2014 Jul;9((1)):351. [PMC free article] [PubMed] [Google Scholar]

35. Liu Q, Li RT, Qian HQ, Wei J, Xie L, Shen J, et al. Targeted delivery of miR-200c/DOC to inhibit cancer stem cells and cancer cells by the gelatinases-stimuli nanoparticles. Biomaterials. 2013 Sep;34((29)):7191–203. [PubMed] [Google Scholar]

36. Liu Q, Li RT, Qian HQ, Yang M, Zhu ZS, Wu W, et al. Gelatinase-stimuli strategy enhances the tumor delivery and therapeutic efficacy of docetaxel-loaded poly(ethylene glycol)-poly(ɛ-caprolactone) nanoparticles. Int J Nanomedicine. 2012;7:281–95. [PMC free article] [PubMed] [Google Scholar]

37. Kim KW, Hwang M, Moretti L, Jaboin JJ, Cha YI, Lu B. Autophagy upregulation by inhibitors of caspase-3 and mTOR enhances radiotherapy in a mouse model of lung cancer. Autophagy. 2008 Jul;4((5)):659–68. [PMC free article] [PubMed] [Google Scholar]

38. Cui F-B, Li R-T, Liu Q, Wu P-Y, Hu W-J, Yue G-F, et al. Enhancement of radiotherapy efficacy by docetaxel-loaded gelatinase-stimuli PEG-Pep-PCL nanoparticles in gastric cancer. Cancer Lett. 2014 Apr;346((1)):53–62. [PubMed] [Google Scholar]

39. Wu F, Li R-T, Yang M, Yue G-F, Wang H, Liu Q, et al. Gelatinases-stimuli nanoparticles encapsulating 5-fluorouridine and 5-aza-2′-deoxycytidine enhance the sensitivity of gastric cancer cells to chemical therapeutics. Cancer Lett. 2015 Jul;363((1)):7–16. [PubMed] [Google Scholar]

40. Li X, Li R, Qian X, Ding Y, Tu Y, Guo R, et al. Superior antitumor efficiency of cisplatin-loaded nanoparticles by intratumoral delivery with decreased tumor metabolism rate. Eur J Pharm Biopharm. 2008 Nov;70((3)):726–34. [PubMed] [Google Scholar]

41. Li X, Lu X, Xu H, Zhu Z, Yin H, Qian X, et al. Pacl*taxel/tetrandrine coloaded nanoparticles effectively promote the apoptosis of gastric cancer cells based on „oxidation therapy“ Mol Pharm. 2012 Feb;9((2)):222–9. [PubMed] [Google Scholar]

42. Cui FB, Liu Q, Li RT, Shen J, Wu PY, Yu LX, et al. Enhancement of radiotherapy efficacy by miR-200c-loaded gelatinase-stimuli PEG-Pep-PCL nanoparticles in gastric cancer cells. Int J Nanomedicine. 2014 May;9((1)):2345–58. [PMC free article] [PubMed] [Google Scholar]

43. Parvanian S, Mostafavi SM, Aghashiri M. Multifunctional nanoparticle developments in cancer diagnosis and treatment. Sens Biosensing Res. 2017 Apr;13:81–7. [Google Scholar]

44. Seymour LW, Ulbrich K, Wedge SR, Hume IC, Strohalm J, Duncan R. N-(2-hydroxypropyl)methacrylamide copolymers targeted to the hepatocyte galactose-receptor: pharmaco*kinetics in DBA2 mice. Br J Cancer. 1991 Jun;63((6)):859–66. [PMC free article] [PubMed] [Google Scholar]

45. Witzigmann D, Quagliata L, Schenk SH, Quintavalle C, Terracciano LM, Huwyler J. Variable asialoglycoprotein receptor 1 expression in liver disease: implications for therapeutic intervention. Hepatol Res. 2016 Jun;46((7)):686–96. [PubMed] [Google Scholar]

46. Julyan PJ, Seymour LW, Ferry DR, Daryani S, Boivin CM, Doran J, et al. Preliminary clinical study of the distribution of HPMA copolymers bearing doxorubicin and galactosamine. J Control Release. 1999 Feb;57((3)):281–90. [PubMed] [Google Scholar]

47. Xu L, Xu S, Wang H, Zhang J, Chen Z, Pan L, et al. Enhancing the Efficacy and Safety of Doxorubicin against Hepatocellular Carcinoma through a Modular Assembly Approach: The Combination of Polymeric Prodrug Design, Nanoparticle Encapsulation, and Cancer Cell-Specific Drug Targeting. ACS Appl Mater Interfaces. 2018 Jan;10((4)):3229–40. [PubMed] [Google Scholar]

48. Devulapally R, Foygel K, Sekar T V, Willmann JK, Paulmurugan R. Gemcitabine and Antisense-microRNA Co-encapsulated PLGA-PEG Polymer Nanoparticles for Hepatocellular Carcinoma Therapy. ACS Appl Mater Interfaces. 2016 Dec;8((49)):33412–22. [PMC free article] [PubMed] [Google Scholar]

49. Wang K, Kievit FM, Sham JG, Jeon M, Stephen ZR, Bakthavatsalam A, et al. Iron-Oxide-Based Nanovector for Tumor Targeted siRNA Delivery in an Orthotopic Hepatocellular Carcinoma Xenograft Mouse Model. Small. 2016 Jan;12((4)):477–87. [PMC free article] [PubMed] [Google Scholar]

50. Sun W, Wang Y, Cai M, Lin L, Chen X, Cao Z, et al. Codelivery of sorafenib and GPC3 siRNA with PEI-modified liposomes for hepatoma therapy. Biomater Sci. 2017 Nov;5((12)):2468–79. [PubMed] [Google Scholar]

51. Mohamed NK, Hamad MA, Hafez MZ, Wooley KL, Elsabahy M. Nanomedicine in management of hepatocellular carcinoma: challenges and opportunities. Int J Cancer. 2017 Apr;140((7)):1475–84. [PubMed] [Google Scholar]

52. Reebye V, Huang KW, Lin V, Jarvis S, Cutilas P, Dorman S, et al. Gene activation of CEBPA using saRNA: preclinical studies of the first in human saRNA drug candidate for liver cancer. Oncogene. 2018 Jun;37((24)):3216–28. [PMC free article] [PubMed] [Google Scholar]

53. Setten RL, Lightfoot HL, Habib NA, Rossi JJ. Development of MTL-CEBPA: Small Activating RNA Drug for Hepatocellular Carcinoma. Curr Pharm Biotechnol. 2018;19((8)):611–21. [PMC free article] [PubMed] [Google Scholar]

54. El Dika I, Lim HY, Yong WP, Lin CC, Yoon JH, Modiano M, et al. An Open-Label, Multicenter, Phase I, Dose Escalation Study with Phase II Expansion Cohort to Determine the Safety, Pharmaco*kinetics, and Preliminary Antitumor Activity of Intravenous TKM-080301 in Subjects with Advanced Hepatocellular Carcinoma. Oncologist. 2019 Jun;24((6)):747–e218. [PMC free article] [PubMed] [Google Scholar]

55. Ducreux M, Cuhna AS, Caramella C, Hollebecque A, Burtin P, Goéré D, et al. Cancer of the pancreas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015 Sep;26(Suppl 5):v56–68. [PubMed] [Google Scholar]

56. Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, et al. Increased survival in pancreatic cancer with nab-pacl*taxel plus gemcitabine. N Engl J Med. 2013 Oct;369((18)):1691–703. [PMC free article] [PubMed] [Google Scholar]

57. Patra CR, Bhattacharya R, Wang E, Katarya A, Lau JS, Dutta S, et al. Targeted delivery of gemcitabine to pancreatic adenocarcinoma using cetuximab as a targeting agent. Cancer Res. 2008 Mar;68((6)):1970–8. [PubMed] [Google Scholar]

58. Trabulo S, Aires A, Aicher A, Heeschen C, Cortajarena AL. Multifunctionalized iron oxide nanoparticles for selective targeting of pancreatic cancer cells. Biochim Biophys Acta, Gen Subj. 2017 Jun;1861((6)):1597–605. [PubMed] [Google Scholar]

59. Hoskins C, Ouaissi M, Lima SC, Cheng WP, Loureirio I, Mas E, et al. In vitro and in vivo anticancer activity of a novel nano-sized formulation based on self-assembling polymers against pancreatic cancer. Pharm Res. 2010 Dec;27((12)):2694–703. [PubMed] [Google Scholar]

60. Hu C-MJ, Kaushal S, Tran Cao HS, Aryal S, Sartor M, Esener S, et al. Half-antibody functionalized lipid-polymer hybrid nanoparticles for targeted drug delivery to carcinoembryonic antigen presenting pancreatic cancer cells. Mol Pharm. 2010 Jun;7((3)):914–20. [PMC free article] [PubMed] [Google Scholar]

61. Pal K, Al-Suraih F, Gonzalez-Rodriguez R, Dutta SK, Wang E, Kwak HS, et al. Multifaceted peptide assisted one-pot synthesis of gold nanoparticles for plectin-1 targeted gemcitabine delivery in pancreatic cancer. Nanoscale. 2017 Oct;9((40)):15622–34. [PMC free article] [PubMed] [Google Scholar]

62. Valle JW, Armstrong A, Newman C, Alakhov V, Pietrzynski G, Brewer J, et al. A phase 2 study of SP1049C, doxorubicin in P-glycoprotein-targeting pluronics, in patients with advanced adenocarcinoma of the esophagus and gastroesophageal junction. Invest New Drugs. 2011 Oct;29((5)):1029–37. [PubMed] [Google Scholar]

Nanoparticles in Gastrooncology (2024)
Top Articles
Latest Posts
Article information

Author: Lidia Grady

Last Updated:

Views: 6486

Rating: 4.4 / 5 (45 voted)

Reviews: 92% of readers found this page helpful

Author information

Name: Lidia Grady

Birthday: 1992-01-22

Address: Suite 493 356 Dale Fall, New Wanda, RI 52485

Phone: +29914464387516

Job: Customer Engineer

Hobby: Cryptography, Writing, Dowsing, Stand-up comedy, Calligraphy, Web surfing, Ghost hunting

Introduction: My name is Lidia Grady, I am a thankful, fine, glamorous, lucky, lively, pleasant, shiny person who loves writing and wants to share my knowledge and understanding with you.